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Three-beam model for studying dislocations in wave pulses 

K W Nicholls and J F Nye 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 lTL, U K  

Received 17 February 1987 

Abstract. A model pulsed wavefield is presented that enables the behaviour of the associated 
wave dislocations to be computed exactly. It consists of three intersecting beams of 
plane-wave pulses. Because the results depend essentially only on the relative time delays 
of the three pulses at any given point the computations have to be done only once, and 
they are then applicable, by a linear mapping, to any angular arrangement of the three 
beams. The model produces dislocations showing the most general behaviour: they are 
curved, with varying edge-screw character, and they glide and climb. The predictions of 
the theory of Wright and Nye, valid for small bandwidth but not rigorously justified, are 
shown to be correct for this model. As the bandwidth increases new dislocation behaviour 
becomes evident: for example, the dislocation trajectories change their connectivity at or 
close to saddle points for amplitude in the corresponding continuous-wave pattern. At 
lower bandwidths Lorentzian-shaped pulses give dislocations that travel on looped trajec- 
tories beginning and ending on the nulls of the corresponding continuous-wave pattern, 
while at higher bandwidths the trajectories lie in close pairs, with one member having 
small arrival times for the dislocations and the other having large arrival times. 

1. Introduction 

Generally, pulsed wavefields contain wavefront dislocations (Nye and Berry 1974). 
These are lines in space along which the amplitude of the complex wavefunction is 
zero and the phase is consequently undefined. The dislocation lines move to sweep 
out surfaces called ‘dislocation trajectories’. Wavefront dislocations are, in fact, a 
generalisation of the stationary interference nulls observed in single-frequency 
wavefields, the positions of the line nulls becoming time dependent when the single- 
frequency condition is removed by, for example, time modulating the strength of the 
sources of the waves. An example is given in figure 1 which shows how a dislocation 
may arise in a two-beam pulsed wavefield. In this case the carrier waves of the two 
contributory pulses must be in antiphase for a null, which then occurs at any time that 
the pulse amplitudes are equal (time t d ,  for example). 

In the same way that the pattern formed by the stationary nulls can be used to 
characterise a single-frequency wavefield, the dislocation trajectories can, in principle, 
be used to characterise a pulsed wavefield. The behaviour of wavefront dislocations 
can be quite complicated (Wright and Berry 1984, Nye 1981, Humphrey 1980) and 
the calculation of their motion in a realistically complicated wavefield is a lengthy 
computational task; in fact, most studies so far have used rather simple, and therefore 
special, models. One which did use a realistic wavefield-that generated by a piston 
radiator (Wright and Berry 1984)-demonstrated a great diversity of dislocation 
behaviour but, because of the computational effort required, it was confined to a single 
pulse shape. A general theory (Wright and Nye 1982) relates the dislocation trajectories 
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Figure 1. Two identical pulses P, and P 2 ,  with a time delay between them, interfere to 
produce a dislocation at time 1,. 

to properties of the corresponding continuous-wave (cw) wavefield, i.e. the wavefield 
that would exist if the bandwidth of the pulses were reduced to zero. The theory is 
applicable where the pulses composing the wavefield are the same or  simply linearly 
transformed versions of one original pulse, which itself has only a small bandwidth. 
In this case, the theoretical prediction is that, to a good approximation, the trajectories 
of the moving dislocation lines will be parts of the surfaces on which the amplitude 
of the corresponding c w  wavefield is a minimum with respect to variations of c w  
frequency. The theory also shows how the time of arrival of a dislocation line at a 
point on its trajectory surface can be found by further analysis of the local c w  
characteristics together with a knowledge of the shape of the original pulse envelope. 
This small-bandwidth theory is not entirely rigorous and, as its authors point out, its 
only ultimate verification comes from comparison with exact results from suitable 
models. The piston radiator model (Wright and  Berry 1984) and laboratory experiments 
using ultrasonic wavefields (Humphrey 1980, Nicho!ls and  Nye 1986) give results that 
agree with the theoretical predictions for the positions of the trajectories. Wright and  
Nye were also able to show that, in a two-beam model, the predicted arrival times for 
the dislocations were accurate within the small-bandwidth regime and  progressively 
less accurate outside it. However, they further showed that, in any two-beam model, 
the dislocation trajectories are degenerate in that they always follow exactly the 
trajectories predicted by the supposedly approximate theory. 

This paper describes a model wavefield which contains dislocations exhibiting all 
the complex behaviour seen before but for which the dislocation behaviour can be 
computed using simple and  efficient numerical techniques. It consists of three identical 
pulses of plane waves travelling in arbitrary directions and thus is free from the 
degeneracy inherent in Wright and  Nye’s two-beam model. It has the great advantage 
that the computations to derive the motions of the dislocations need be done only 
once: when they have been done for one set of wave directions the results for any 
other set of wave directions can be obtained immediately. Although easily computable, 
therefore, this model represents a complete class of wavefields. Even though the model 
restricts the wavefield to being composed of only three identical pulses, there is no 
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restriction on the type of pulse envelope or the pulse bandwidth; in fact, the simplicity 
of the necessary computations has allowed the calculation of the dislocations for 
several envelope shapes and bandwidths, thus revealing new behaviour. A further 
result is to illustrate how the accuracy of the predictions of the small-bandwidth theory, 
for both dislocation trajectories and arrival times, degrades outside the small-bandwidth 
regime. 

2. The three-beam model 

Our model assumes a non-dispersive isotropic homogeneous medium. The three- 
dimensional wavefield is produced by the interference of three identical pulses of plane 
waves travelling in different directions (that is, travelling neither parallel nor antiparallel 
to one another). Each pulse consists of an envelope function f ( t )  (the 'pulse shape') 
modulating a carrier wave of frequency w o ,  whose time dependence is taken to be 
e-'".'. Thus at the origin r = 0 each pulse is given by 

$o( t )  = f ( r )  e-lwo' 

with f (  t )  real. At a given point r in the three-dimensional space each wave pulse, say 
of wavevector k, then has the form 

$ ( t ,  7) = f ( t - 7 )  e-'"o"'' 

where T is the delay time given by wo7 = k * r. Thus the total wavefunction given by 
the addition of all three pulses is 

$( t ;  T ~ ,  r 2 ,  7,) = e-'"n'[f( t - T ~ )  e'"o'l +f( t - 7*) e'"'~'~ + f (  t - T ~ )  e'"0'3] (1) 

where the three delay times T], r2 ,  73 are related to the three wavevectors k l  , k 2 ,  k3 by 

m o r ,  = k ,  - r wor2 = k,  . r war, = k,  r. (2) 

Equations ( 2 )  can be regarded as defining a linear mapping between r space and 7 

space, in which a point is defined by its coordinates T ] ,  r 2 ,  The mapping is 
one-to-one, both ways, provided the equations are linearly independent, a condition 
met in the general case but not when the beams are coplanar (we shall refer to this 
degenerate case later). 

Equation ( 1) makes no explicit mention of the beam directions. This is important, 
for it means that, once the wavefield has been determined throughout 7 space, the 
same set of results can be mapped into r space for any configuration of beam directions; 
all that changes is the mapping. 

Inspection of the wavefunction (1) reveals that 

$ ( t i  71, 7 2 , 7 3 ) = $ ( f - - T ;  T l - T ,  7 2 - T , 7 3 - T )  (3) 

where T is a constant time delay. This result means that we do not need to compute 
$ ( t )  for all combinations of T ~ ,  T?, 73 but only for those lying in a single plane in T 
space, for example T~ + T ~ +  7, = 0. To see this, choose T to be the mean delay time 
7 = +( 71 + 7 2  + 73) and note that any point (7 ,  , 72,  T?) in T space is then associated by 
(3) with the point (T] - 7, T~ - ?, 73 - 7 ) ,  which lies in this plane. Thus, as is obvious 
physically, the form of $( t )  is decided by the differences in the delay times rather than 
by their absolute values. 
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The wavefunction on the plane 7,  + 72 + 73 = 0, which we call the 'reference plane', 
can be expressed as a function of t and any two of the three delay times 7, , T ~ ,  73.  

Thus, choosing T~ and T? it is 

The particular features we are interested in are the dislocations, the lines in space 
where $ = 0. From (4), the condition for a dislocation to be present on the reference 
plane at T ~ ,  r2 and at time t d  is 

f (  td - T ~ )  e'"il'l +f( t ,  - T ~ )  elw,'> + f (  td + T~ + T ~ )  e-rw~l'71+T~) = 0. ( 5 )  

In view of (3) with T = 5 this is also the condition that a dislocation will be present 
at the general point ( T ~ ,  T ~ )  at time t d  + ?. In  essence, determining the behaviour 
of dislocations in the three-beam model consists in finding the loci of points at which 
equation ( 5 )  is satisfied. 

Since equation ( 5 )  is complex it represents two conditions. Elimination of f d  would 
then yield a relation between T~ and T ~ .  This is the dislocation trajectory, a line in 
( T ~ ,  T ~ )  space. As we have explained, the result is applicable to any configuration of 
the three beams, but to display it in a plane diagram a decision must be made about 
the reference axes. We choose the system shown in figure 2 .  Three coplanar reference 
axes are taken at 120" to one another and the representative point P in the reference 
plane of 7 space with coordinates T ~ ,  T ~ ,  73 is located in the plane diagram as the 
intersection of the three lines perpendicular to the axes whose perpendicular distances 
from the origin are w ~ T ~ ,  W ~ T ~ ,  ~ 0 ~ 3 .  The condition 71 + T~ + T~ = 0 on the reference 
plane ensures that the three lines meet in a single point. An advantage of this way of 
plotting is that the resulting diagram has a simple interpretation in r space, namely it 
corresponds to three coplanar beams at 120" to one another propagating along the 
axes. Thus, although the result is applicable by use of the mapping ( 2 )  to a general 
configuration of beams, as we have emphasised, the diagrams we present can also be 
thought of in this simple way. 

1 

Figure 2. The reference plane rl + r2 + r, = 0 in r space. The point P has coordinates 
rl , r2 ,  r3 .  Interpreted in r space, Plies at the intersection of three wavefronts perpendicular 
to the three axes. 
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When the three beams are coplanar, but not necessarily at 120" to one another, 
there is a linear relation (in general, irrational) between the three wavevectors k l ,  k 2 ,  k , :  

p k ,  + 4k2 + sk,  = 0 

where p ,  q, s are constants. Equations (2)  are then no longer linearly independent and, 
as a consequence, the mapping from r space to T space is degenerate. In fact the 
whole of r space then maps onto a single plane in 7 space, defined by p~~ + q72+ s7, = 0. 
There is no difficulty about this, because we can in principle obtain results covering 
the whole of T space. The case of three equally inclined coplanar beams referred to 
above is the special instance where p = 4 = s = 1, and where the relevant plane in 7 

space into which r space maps happens also to be the reference plane, defined earlier 
as 71 + 72 + T~ = 0. 

Before presenting the pulse results in this way, which is the main object of this 
paper, we shall describe the dislocation trajectories predicted for the three-beam model 
by the small-bandwidth theory. 

3. The predicted dislocation trajectories 

Application of the small-bandwidth theory requires a knowledge of the corresponding 
continuous-wave (cw) wavefield I,& in the neighbourhood of the pulse centre 
frequency wo.  This is constructed by allowing the three beams to be of frequency w 
and unit amplitude. The wavevectors are now K ,  = ( w / w o ) k l ,  K2  = ( o / w o ) k 2 ,  K ,  = 
( w / w o ) k 3  and we have 

( 6 )  

where 4,  = K 1  r, 42 = K2 * r, 4, = K3 * r. The complex amplitude of this c w  wavefield 
is denoted by a(r, U ) .  Thus 

,/,cw = (e'bt + e'42 + e'43) e-'"' 

a(r ,  w)=ei+~+ei+2+ei43. ( 7 )  
For given frequency this is a three-dimensional distribution of amplitude and phase 
and we need a suitable two-dimensional display. Choosing frequency wo the phases 
are simply 

4,  = k ,  - r d2 = k2 * r 4, = k,  - r (8) 

which is the same as (2) with w 0 ~ , ,  O ~ T ~ ,  WO73 replaced by 4 , ,  4 2 ,  4,. We therefore 
proceed just as for the pulse case. 

For fixed frequency the complex amplitude a can be regarded either as a function 
of position r or of the phases ( P I ,  &, 4,. Then, noting that 

and taking the constant Q, to be the mean phase f ( 4 ,  + &+ 4,), we can refer all results 
to the plane in (6 space + , + c # J ~ + ~ ~ = O ,  which, by the mappings (2) and (8), is the 
reference plane. 

We write M for the modulus of a, i.e. the amplitude of the continuous wave. 
Equation (9) shows that adding a constant to all the phases leaves M unaltered, and 
therefore the amplitude pattern remains constant in 4 space on lines parallel to 
4l = & = 4,-that is to say, in r space on lines parallel to kl  0 r = k2 r = k3 - r. This 
is parallel to the vector k2 x k,  + k,  x k ,  + k ,  x k,  which we call the 'pattern axis'. ( I t  is 
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not, in general, perpendicular to the reference plane in r space.) Thus the amplitude 
pattern for t/Icw, unlike the phase pattern, is essentially two dimensional. We represent 
it in the plane 4l + 42 + c$~ = 0 by drawing a diagram exactly analogous to figure 2 ,  
with W ~ T ~ ,  W ~ T ~ ,  W ~ T ~  replaced by d l ,  &, &. The diagram can be read in two ways: 
( a )  it is the amplitude pattern in r space for three coplanar beams at 120"; ( b )  after 
linear distortion given by the mapping (8) it is the amplitude pattern in r space for 
three beams inclined at general angles. 

The prediction of the small-bandwidth theory is that to first order the dislocation 
trajectories are parts of the surfaces defined by 

i.e. frequency minima of the amplitude. In the three-beam model, where the beams 
remain of unit amplitude, by equation (6), changing the frequency simply changes the 
scale of the pattern in 4 space and r space. The surfaces given by (10) are called 
potential trajectories and are independent of the pulse shape. It is predicted that the 
dislocation lines sweep out only parts of these surfaces, and that the pulse shape 
determines the precise extent to which they are used by the dislocations. 

The full phase and amplitude pattern of t/Icw is given in appendix 1. Here we need 
only the amplitude pattern for w = wo and the surfaces given by ( lo) ,  which are shown 
in figure 3.  Because of the symmetry the full pattern can be inferred from one 30" 
sector. The bolder full lines are the loci for which both of equations (10) hold; the 
broken lines indicate those additional loci (maxima) for which only the first is true. 
The lighter background lines are the contours of amplitude. From the figure it appears 
that the potential trajectories include all the c w  null lines and selected saddles for c w  
amplitude. The potential trajectory surfaces will always include the null lines but it 
is a special property of the three-beam model that causes saddles to be included as 
well. The potential trajectory is the locus of points where the amplitude does not 
change under an infinitesimal change of frequency. Therefore only if the amplitude 
at a saddle stays unchanged does it lie on the potential trajectory. In the three-beam 
model this condition is fulfilled because varying the frequency simply changes the 
spatial scale of the amplitude pattern. In a general wavefield, unlike this one, the 

Figure 3. The c w  amplitude pattern for w = wo (light contours). A unit cell is outlined. 
The small-bandwidth theory predicts that the pulse dislocations will move along parts of 
the bold lines, given by equations (10). The nulls of the amplitude pattern are indicated 
hy circular contours centred ozi the bold lines; the other circular contours denote maxima. 
The trajectory pattern is not periodic. 
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numbers and directions of the constituent plane waves would vary with frequency and 
therefore both the positions and the heights of saddles would do so too. 

The potential dislocation trajectories are concentric corrugated cylinders lying 
parallel to 41 = d2 = 43 in 4 space, or in r space the pattern axis. If figure 3 is thought 
of as representing the case of three coplanar beams at 120°, the cylinders are perpen- 
dicular to the diagram. We will show later how the small-bandwidth theory determines 
what portions of the potential trajectories are used by the dislocations, and the way 
this is affected by pulse shape. 

4. The computed trajectories and times of the dislocations 

We now outline the method used to find the loci on which the dislocation condition 
(5) is satisfied, i.e. the method used to compute the dislocation trajectories exactly. 
First, a pulse envelope function f (  t )  must be chosen and, following Wright and Nye 
(1982), we take as our main example f (  r )  = sech(at), where U is the bandwidth of the 
pulse (figure 4). Then we decompose the dislocation condition ( 5 )  into its real and 
imaginary components, namely 

sech a( t - T ~ )  cos w o ~ l  + sech a( t - T ~ )  cos w072 

+ sech a( f + 71 + 7 2 )  COS W O (  71 + 7 2 )  = 0 

sech a( t - T ~ )  sin w o ~ l  + sech a( t - 7*) sin w 0 ~ 2  

- sech U( t -k 71 7 2 )  sin w0( T~ + T2) = 0. 

For a point ( T , ,  T ~ )  near a dislocation trajectory the real and imaginary parts will 
generally pass through zero at different times t ,  and t i ,  as shown in figure 5. To find 
a locus for which (11) is satisfied, we select a point ( T ~ ,  T ~ )  that lies on a potential 
dislocation trajectory (and, we hope, near an actual trajectory) and then use a simple 
approximation algorithm to find the times of the zero crossings. If the point is indeed 
near a dislocation trajectory the interval between t ,  and t i  will be small. By adjusting 
the position (modifying either T~ or T ~ )  and monitoring the effect of these adjustments 
on the recalculated time interval, we can reduce the interval tc zero. Condition (11) 
is then satisfied: the time td of the (simultaneous) zero crossings is the time of arrival 
of a dislocation at a point on its trajectory corresponding to the final values of T~ and 
T ~ .  The triplet ( T ~ ,  T ~ ,  t d )  is stored. 

Figure 4. A single hyperbolic secant pulse ( D  = 0 . 0 7 3 ~ ~ )  with the carrier wave, as it would 
be seen on an oscilloscope. 
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Figure 5. The real and imaginary parts of the complex amplitude of the signal at a given 
position near a dislocation trajectory. The zeros occur at times I ,  and 1, respectively. 

A neighbouring point on the dislocation trajectory may be found by stepping either 
T~ or r2 and then repeating the search procedure. In this way the complete trajectory 
can be traced out, the search algorithm only failing when the gradients of the real and 
imaginary parts of the received pulse are both small in the vicinity of the zero crossings, 
a condition which arises when the dislocation is in the far head or tail of the pulse. 
To deal with this we introduce an arbitrary visibility threshold. The numerically simple 
and computationally economical nature of this method of determining the dislocation 
arrival times and trajectories is the most important advantage of the model: it has 
made it feasible to calculate the dislocation behaviour in a wavefield using several 
types of pulse envelope (hyperbolic secant, Gaussian, Lorentzian and a non-symmetric 
curve) at many different bandwidths U. 

Inspection of conditions (1 1) reveals invariance under the transformations 

(71, 7 2 ,  7 3 ) + ( 7 2 ,  7 3 7 7 1 )  

( 7 1 , 7 2 9  l ) + ( - - T I ,  - 7 2 , - t )  

( 7 1 , 7 2 ) " ( 7 2 ,  71). 

7, = -7, - 72 

In the plane diagram described in § 2 this implies a threefold rotation axis through 
the origin, a time-reversing diad axis also through the origin and a mirror line along 
7, = T*. Thus we need to find the dislocation trajectories for only a 30" sector of the 
wavefield and can use graphical manipulation to generate the full 360" pattern. Figure 
6(a) shows the dislocation trajectories in the three-beam model for a bandwidth of 
0.0730~ (that is, using a pulse envelopef( 1 )  = sech(0.073wot)) out to a radius of about 
5 periods of the carrier wave. Figure 6(b) shows one 60" sector of the pattern with 
the motion of the dislocations indicated. 

In viewing this pattern we should keep in mind that it is for the reference plane 
71 + 72 + 7, = 0 in 7 space or, by the mapping (21, for the plane ( k ,  + k2 + k , )  * r = 0 in 
r space. Thus the computed dislocation arrival times are those appropriate to this 
plane. It is easiest to visualise the case where the three beams are coplanar at 120" to 
one another. Then the diagram simply represents a plane in r space perpendicular to 
the dislocations and the arrival times are those appropriate to this transverse plane. 

The pattern in figure 6(a) has three distinct regions: the 'inner region' containing 
disconnected trajectories, the 'intermediate region' in which the trajectories have 
connected into rings and the 'outer region' where sets of trajectories cross each other. 
The connectivity of the trajectories in the outer region is established by looking at the 
arrival times of the dislocations. A given segment of trajectory can then be of two 
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t l a  1 

1 

Figure 6. ( a )  Computed dislocation trajectories in the reference plane for a hyperbolic 
secant pulse envelope (U = 0 . 0 7 3 ~ ~ ) .  The k vectors shown refer to the case of three coplanar 
beams at 120" to one another. ( b )  A 60" sector, with arrowheads showing the direction of 
motion of the dislocations. They collide and annihilate at the positions marked x and are 
born in pairs at the positions marked 0. H is the site of the hooking-up event shown in 
detail in figure 8. At junctions each trajectory runs straight across. 

kinds: (i)  almost straight and tending to lie radially, and (ii)  a remnant of the trajectory 
rings, zigzagging around the intermediate region. The first kind corresponds to interfer- 
ence essentially between only two pulses (figure 6 ( b )  inset A); the third pulse is so 
distant in time that its far head or tail acts merely as a perturbation. We call these 
'two-beam' segments. The second kind of segment corresponds to the far head or tail 
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of a distant pulse generating a dislocation by interfering with the combined tails or 
heads of the other two (figure 6 ( b )  inset B), which we call ‘three-beam’ segments. At 
points where trajectory segments of the two types cross the two configurations occur 
at different times in the same received pulse. Further from the intermediate region, 
as the third pulse becomes more separated, the visibility of dislocations on the three- 
beam segments deteriorates and they become progressively more difficult to track 
numerically; this sets a radial limit on the calculated pattern. From figure 6 ( a )  it can 
be seen that the two-beam segments gradually feel more of the third pulse as they 
approach the intermediate region, where they turn into three-beam segments. 

A convenient way of showing the motion of the dislocations is to plot their arrival 
time td as a function of distance s along the trajectory (from some arbitrary origin). 
Figure 7 illustrates the typical motion of dislocations found in ( a )  the inner, ( b )  the 
intermediate and ( c )  the outer regions. Maxima of f d  represent dislocations colliding 
and annihilating; minima correspond to pairs of dislocations being created and then 
separating. Figure 7 ( c )  shows a cascade of annihilations and pair creations: at A a 
dislocation annihilates with one of a pair created further along the trajectory (at B). 
The second of the pair proceeds along the trajectory, effectively replacing the original 
dislocation, and the sequence is repeated. Wright and Berry (1984), who saw disloca- 
tions with similar behaviour in their piston radiator model, called each annihilation- 
creation couplet a ‘skip’ event. 

l a )  l b l  I C )  

Figure 7. Typical motions of dislocations shown by plotiing distance s along the trajectory 
against arrival time t,. ( a )  Inner region, ( b )  intermediate region, ( c )  outer region. 

We can now describe in general terms the history of the dislocations in the pulsed 
model. Very early, before the main part of any of the pulses has arrived at the origin, 
dislocations are present only in the inner region, and far out in sectors 1, 2 and 3 
(figure 6 ( a ) ) .  Those in the inner region are generated by the far heads of the pulses 
and, as can be seen from figure 7 ( a ) ,  travel very slowly at first. In the outer region, 
however, the dislocations are produced by the interference of the main parts of only 
two pulses and move rigidly with the composite wave at a speed of 2 c  (in the coplanar 
120” beam configuration), c being the plane-wave velocity. As these dislocations 
approach the intermediate region they begin to feel the effect of the third pulse, and 
their speed begins to vary (figure 7 ( c ) )  to the extent that they eventually skip. At about 
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this time pairs of dislocations are born in sectors 1, 2 and 3 of the intermediate region, 
skipping round the central region until they meet the boundary of their sectors, where 
they annihilate with others engaged in the same activity in neighbouring sectors. In 
the intermediate region, therefore, dislocations exist for a well defined and limited 
period of time. The dislocations in the inner region have now accelerated to their 
maximum speed and are passing near their associated c w  nulls (i.e. the positions they 
condense onto as the bandwidth of the original pulses is reduced to zero). ’The incoming 
dislocations in the outer region are ultimately either turned away through 60” or, after 
skipping around the intermediate region, are turned away to leave at an angle of 120” 
to their original directions. At very much later times, well after the main parts of all 
the pulses have passsed through the origin, the only surviving dislocations are those, 
once again, moving very slowly in the inner region, and others retreating far out in 
sectors 1-2, 2-3 and 1-3. 

5. Variation with bandwidth 

We now examine how the behaviour of the dislocations changes with bandwidth. This 
is important because it is the size of the bandwidth that limits the accuracy of Wright 
and Nye’s theory. They have shown that the dimensionless parameter which charac- 
terises how much a pulsed wavefield differs from a continuous wavefield is the 
‘delay-bandwidth’, (TAT, where AT is the ‘elongation time’ of the observed pulse ( A T ,  
in their notation). The elongation time is a measure of the spread in arrival times of 
the individual pulses constituting the received signal. 

In the three-beam model a convenient measure of elongation time is the root-mean- 
square delay of the three pulses with respect to their mean delay ? = +( T ,  + T ~ +  T ~ ) ,  

which is  zero on the reference plane. On that plane, therefore, the delay bandwidth 
(TAT is U [ $ (  T : +  T : +  T , T ~ ) ] ” * .  It is easy to show that, on diagrams such as those in 
figures 6(a, b ) ,  there is a linear increase in (TAT with radial distance from the origin, 
independent of the azimuthal angle. We can say, then, that the wavefield resembles 
continuous waves nearer the origin, and becomes more pulse-like further from the 
origin. In effect, the bandwidth scales the delay times. With a decreased bandwidth 
(T the delay times must be increased to show the pulsed nature of the wavefield to the 
same degree. Thus the sizes of the intermediate and inner regions of the pattern in 
figure 6( a )  can be changed by changing U. The extreme of low bandwidth is of course 
the c w  case, the pattern consisting of a hexagonal array of dots at the c w  null positions. 
In this case the inner region has spread over the entire plane. In the extreme of large 
bandwidth the pattern would, in theory, consist of a lattice of straight lines, the 
two-beam-dominated far-field now stretching into the origin. In practice the visibility 
of the dislocations would be so low as to make them undetectable, because they would 
result from the mutual cancellation of very low-amplitude parts of the pulse envelopes. 

The change in delay-bandwidth with radial displacement is a useful feature of the 
three-beam model, and of the coplanar symmetric beam configuration in particular; a 
single figure can be used to show the change in structure of the dislocation trajectories 
as (TAT is varied. Of course, in this presentation trajectories are shown only for discrete 
values of delay-bandwidth, and so fine details of their change in form with (T will be 
missed. 

A phenomenon of this kind is the hooking-up of trajectory rings, seen, for example, 
near H in figures 6 ( a ,  b ) .  To investigate its details the trajectories in the neighbourhood 
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have to be recalculated for several values of (T in the appropriate range. A sequence 
of trajectory diagrams is shown in figure 8, illustrating how the outer trajectory forms 
a loop before connecting with the inner branch. Before the hook-up two dislocations 
nearly collide and  rebound; after it, two dislocations annihilate and  then two more 
are created. At the hook-up itself either description is valid. Nye and Berry (1974) 
interpreted a point of connection like this as a collision and rebound of dislocations. 
We see here how such an  event is structurally unstable to change in bandwidth. In 
the range 0.8 < (TAT < 1.4 similar hook-ups occur at other points between the intermedi- 
ate and outer regions. 

- 

Figure 8. The hooking-up of dislocation trajectories. ( u ) - ( f )  show how the trajectories 
evolve as the bandwidth is increased. The hook-up occurs at the point H in ( d )  at a 
delay-bandwidth of U A T  = 1.01. S is a saddle for c w  amplitude. Arrows show the direction 
of motion of dislocations. 

Why d o  the dislocation trajectories form a loop before hooking-up? A physical 
interpretation may be given by noting that trajectories have a ‘sidedness’: on one side 
the received pulse has one more wavecrest than on the other. In figure 8 the sides of 
the two trajectory branches are distinguished by shading, and the mechanism used in 
the hook-up can now be seen to ensure that the sides match up  after the event. It is 
interesting that the point where the trajectory crosses itself remains fixed and coincides 
exactly with a saddle for amplitude in the corresponding c w  pattern. 

6. Comparison with theory 

We next check the agreement between the predictions of the small-bandwidth theory 
and the computed results, which, as we have emphasised, can be obtained for any 
bandwidth. A comparison between the computed trajectories (figure 6( b ) )  and the 
potential trajectories of the small-bandwidth theory (figure 3) shows that in the inner 
region the dislocations follow segments of the potential trajectories containing c w  
nulls, in the intermediate region the computed trajectories have the same general form 
as the potential trajectories but differ from them in detail, while in the outer region 
there is little correspondence between the two patterns. This is in broad agreement 
with our expectations of the theory. I t  is most accurate near the origin where the 
delay-bandwidth is small and becomes less accurate as the delay-bandwidth increases. 
It is notable that the only potential trajectories predicted by the small-bandwidth theory 
in the outer region are those shown by the exact computation to be associated with 
three-beam events; there are no two-beam potential trajectories. 
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For more detailed comparisons between the computed results and the predictions 
of the small-bandwidth theory we select one dislocation trajectory in the pattern and 
look at the dislocation arrival times along its length. To avoid any special symmetry 
effects the chosen trajectory ( T  in figure 6(b))  is associated with a c w  null which does 
not lie on a symmetry axis. Wright and Nye (1982) show that for any trajectory 

MA=O M;>O (12a) 

and 

td=&,+sgn(+g’)(M,”/M,,)’’2+ i 
where i satisfies 

f ( i ) + s g n ( ~ g ’ ) ( M , ” / M , ) ’ ’ * f ’ ( i )  = o .  
Equation (12a) was given in 0 3 and is the condition for a potential trajectory; the 
primes indicate differentiation with respect to w,  and the suffix zero indicates that the 
derivative is evaluated at U,,. In (126) and (12c), 4 represents the phase of a( r ,  w ) ,  
td is the arrival time of the dislocation and f ’ (  t )  is the time derivative of the envelope 
function f ( t ) .  The parts of the potential trajectories (defined by (12a)) used by 
dislocations are those on which the arrival time (given by (126, c ) )  is real. 

Figure 9( a )  shows the potential trajectory (the broken curve) together with the 
computed trajectories for delay-bandwidths of 0.07, 0.14, 0.29 and 0.43. As the band- 
width is increased, the dislocation trajectories both lengthen and migrate from the c w  
null position. This migration is not given by the first-order theory, but it is anticipated 
in a more rigorous approximate theory (Wright and Nye 1982) developed to show 
dislocation behaviour in the immediate vicinity of c w  nulls. This ‘local theory’ shows 
that, for small bandwidths, dislocation trajectories are expected to miss the nulls by 
a distance proportional to the square of the bandwidth, a prediction shown in figure 
9(6)  to be verified for ( T A T S  0.2 by the exact three-beam computation. 

Another theoretical result is that the length of dislocation trajectories is directly 
proportional to the bandwidth. Figure 9(c) shows that, in our example, this result is 
valid for ( T A T S  0.4. It is interesting to notice in figure 9(a)  how the end portions of 
the trajectories converge onto the potential trajectory at larger bandwidths and, at the 
same time, the endpoints approach the saddles for M O .  We recall from § 3 that, in 
wavefields composed of a fixed set of plane-wave beams whose directions are indepen- 
dent of frequency (such as the three-beam wavefield), those saddles for which M :  2 0 
are always included in the potential trajectories. I t  appears that, in the three-beam 
model, for high enough bandwidth the actual (computed) trajectories are also pinned 
by these saddles. This cannot be a general property of pulse diffraction patterns because 
it would imply that the centre frequency w,, of the pulse had a special status. 

For dislocation arrival times, figure 10 shows close agreement between the first-order 
small-bandwidth theory and the computed results at least up to a A r  = 0.43. Moreover, 
some of the divergence from the theory will be due to the difficulty in comparing two 
quantities on different curved lines (that is, the predicted and computed trajectories). 
Wright and Nye’s local approximate theory gives the arrival time of a dislocation at 
a special point on its trajectory close to the c w  null. This point, J, is the intersection 
of the trajectory with the line M = 0, the line swept out by the c w  null as the frequency 
is varied. (Note that they consider a two-dimensional section through the wavefield, 
perpendicular to the dislocation line.) Their result is that the time from the first-order 
small-bandwidth theory at which the dislocation passes through the null is identical 
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Figure 9. ( a )  Magnified view of the dislocation trajectory marked Tin figure 6( b ) ,  associated 
with the c w  null at ( o J ~ T , ,  O J ~ T ~ )  = (:T, in-), for a hyperbolic secant pulse envelope. The 
potential trajectory (broken curve) joins the saddle point for c w  amplitude marked S with 
another outside the diagram, and passes through the c w  null N. The length and position 
of the actual (computed) trajectory depends on the delay-bandwidth, as shown by the full 
curves, converging to N as u A + + O .  ( b )  Perpendicular distance s' of the trajectory from 
N plotted against the square of the bandwidth. ( c )  Total length L of the trajectory plotted 
against the bandwidth. 

with the time at which the dislocation passes (more accurately) through J in the local 
theory. They also show that the speed of the dislocation is constant near the null, a 
result seen from figure 10 to be accurate for U A T G  0.3. Figure 11 shows that even for 
quite high bandwidths ( U P T  - 0.5) the prediction for the arrival time at J agrees closely 
with the numerical results (note the highly expanded arrival-time scale and recall that, 
in general, arrival times are between *a). The deviation from the theory is accurately 
quadratic with bandwidth, as would be expected, because changing the sign of U with 
a symmetric pulse leaves the physical situation unaltered. When extrapolated back to 
(TAT = 0, the graph yields the predicted value with great accuracy, thereby not only 
verifying the theory but also providing a stringent check on our numerical methods. 

7. The Lorentzian pulse shape 

Wright and  Nye's two-beam model showed that the motion of dislocations is very 
sensitive to the asymptotic behaviour of the head and tail of the original pulse; the 
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Figure 10. Arrival time 1, as a function of distance s along the trajectory of figure 9 ( a ) ,  
for different delay-bandwidths: ( a )  u A ~ = o . O 7 ,  ( b )  0.29, ( c )  0.14, ( d )  0.43. The exact 
(computed) results (full curves) diverge from the predictions of equations (12) (broken 
curves) as U&+ increases. The scale for s is not the same in the four diagrams. The shape 
of the curves in ( d )  is different because the trajectory has joined up with the adjacent one 
at a saddle S .  

Figure 11. Arrival time rd at the special point J as a function of (uA7)'. The prediction 
of the local theory (broken line) is very accurately verified as ~ A 7 - 0 .  

envelopes of their example pulses were the Gaussian, the hyperbolic secant and the 
Lorentzian, which decay as e- '2 ,  e-' and  tC2 respectively. In $0 4-6 we have considered 
the detailed behaviour of dislocations in the three-beam model with the hyperbolic 
secant pulse envelope. Now we consider the Lorentzian. 

In the two-beam model the trajectories for the Lorentzian were similar to those for 
the hyperbolic secant, consisting of straight disconnected lines through the c w  nulls. 
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However, the time behaviour of the dislocations was more complicated. They started 
at the c w  nulls at time t = -CO, travelled to one end of their trajectory, turned back to 
travel through the null to the other end, and then returned once again to the null at 
t = +W. The trajectories computed for a Lorentzian pulse envelope (with U = 0 . 0 7 3 ~ ~ )  
in the three-beam model are presented in figure 12(a). At first sight the pattern looks 
very similar to the corresponding one for the hyperbolic secant (figure 6 ( a ) ) .  However, 
figure 12( b )  is an enlarged section showing the loop structure of a typical disconnected 
trajectory in the inner region: the folded trajectory found in the two-beam model has, 
in the three-beam model, opened out. Although we show the ends of the trajectory 
connected at the c w  null, this cannot be determined from the computer program. This 
is because the visibility of the dislocations becomes lower and lower as the null is 
approached, and they cannot be tracked all the way. Nevertheless, we assume for now 
that such trajectories do indeed start and end on their associated c w  nulls. 

As the delay-bandwidth is increased neighbouring trajectories link up, as near L 
in figure 12(a). Two separate branches are then formed (figure 13), one (broken line) 
which includes the c w  null positions, and on which the arrival times are very late and 
very early, corresponding to dislocations in the far head and tail, and the other (full 
line) with more moderate arrival times, corresponding to high-visibility dislocations 
in the middle of the pulse. The high-visibility branch is reminiscent of the trajectories 
in the intermediate region of the pattern for the hyperbolic secant; the low visibility 

*- 
N 

Figure 12. ( a )  Computed three-beam trajectories in the reference plane For a Lorentzian 
pulse envelope (U = 0 . 0 7 3 ~ ~ ) .  Trajectories towards the centre that appear as a single line 
are actually double. A typical link-up occurs near L and a typical hook-up near H. ( b )  
Magnified view of a trajectory in the inner region; the dislocation starts and finishes at the 
c w  null N. 
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Figure 13. Schematic diagram for a Lorentzian pulse envelope, showing how two discon- 
nected looped trajectories link up at L to produce one branch that contains the nulls N 
and one that does not. Extreme values of arrival time are shown. The vertical separation 
is exaggerated. 

branch is new. The link-up occurs at saddles in the amplitude of the corresponding 
cw pattern. It corresponds to the rather simpler link-up noted in Q 4 for the hyperbolic 
secant pulse, where the ends of the trajectories simply joined together to form a single 
trajectory. 

A second way in which trajectories join together is seen near H in figure 12(a ) ;  
this is the hook-up event already described for the hyperbolic secant pulse (figure 8) 
and it takes place in the same way for both kinds of pulse envelope. 

Figure 14. ( a )  Trajectories associated with the c w  null N at war, =$n, W ~ T ~  =$n, for a 
Lorentzian pulse envelope and two different delay-bandwidths. For a A 7  = 0.43 the lower 
part of the computed loop (full curve) lies on the trajectory predicted by the small-bandwidth 
theory (broken curve terminating at the arrowheads) but its endpoints are different. For 
U A T  = 0.14 the lower part of the computed loop is indistinguishable from the trajectory 
predicted by the small-bandwidth theory. ( b )  Distance s along the trajectories in ( a )  
plotted against dislocation arrival times I,. s is measured from the perpendicular to the 
trajectory through N. 
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As before, to test the small-bandwidth theory we choose an unsymmetrically placed 
c w  null and compute the associated dislocation trajectory and arrival times for different 
delay-bandwidths. The results are then compared with those predicted by the first-order 
theory in equations (12). Figure 14(a) shows the computed trajectories for V A T  =0.14 
and 0.43, compared with the trajectories predicted by the first-order theory (broken 
line). Figure 14(b) presents the predicted and  computed dislocation arrival times for 
the same delay-bandwidths. The agreement with the first-order theory is good for the 
smaller delay-bandwidth for both the trajectory and  the arrival times; for the larger 
value, however, the predictions break down. The loss of accuracy with increased 
delay-bandwidth is noticeably faster for the Lorentzian than for the hyperbolic secant. 

Using Wright and  Nye’s more rigorous local theory, valid near the nulls, it can be 
shown that dislocations start and end on nulls exactly as we assumed in figure 12(b). 
This result, which is independent of the bandwidth, appears physically rather odd. 
Why should dislocations in a wavefield which may have a very high bandwidth be 
restricted to passing through points which become less significant as the bandwidth is 
increased? The answer is that, far enough from the centre of a Lorentzian envelope, 
the rate of change in the amplitude of the envelope is small enough for the beam to 
resemble continuous waves. This is not so for the hyperbolic secant where the die-away 
in the envelope remains exponential, and  the beam therefore pulse-like, however far 
from the pulse centre it is observed. 

8. Three dimensions 

So far the only physical interpretation of the various diagrams we have offered has 
been in terms of the symmetric coplanar configuration of beam directions. In this 
section we describe the way the behaviour and form of the dislocation lines change 
when a three-dimensional configuration is adopted. Recall from § 2 that, once the 
trajectories and arrival times of the dislocations have been calculated across one plane 
in T space (we chose the reference plane 7, + r2 + T )  = 0), the same results can be 
interpreted for any configuration of beam directions. Thus, for a configuration other 
than the coplanar symmetric one, all that is necessary is a reinterpretation of the 
patterns shown in figures 6(  a )  and 12( a),  for example, and of the dislocation arrival- 
time data. It can be shown (from (2) and (3 ) )  that this reinterpretation involves only 
a linear transformation. 

A way of generating a three-dimensional arrangement containing the essence of 
the three-dimensional case, but without the unhelpful complications of total generalisa- 
tion, is to take the coplanar symmetric case and  raise each of the original k vectors 
out of the plane by an  equal angle 6. Using this configuration, we now reinterpret the 
pattern of trajectories calculated for the hyperbolic secant, say. The necessary transfor- 
mation on the pattern in figure 6, which becomes a section through a three-dimensional 
wavefield perpendicular to the symmetry axis, is simply a radial expansion by a factor 
of sec 6. The time of arrival of a dislocation at a point on the trajectory surface at 
height h (ahove the plane through the origin perpendicular to the symmetry axis) is 
given by td + ( h  sin 6)/  c, where fd  is the value computed for the coplanar case ( 6  = 0 ) .  
These results are easily obtained from equations (2) and (3) .  The most marked change 
that occurs when the k vectors are raised (that is, 6 made non-zero) is to the shape 
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of the dislocation line embedded in the trajectory surface: rather than being straight 
and parallel to the symmetry axis, it becomes curved with a slope dependent on 8 and 
on the local gradient of the dislocation arrival time across the trajectory. This can be 
explained as follows. 

Referring to figure 15, consider the intersection of the trajectory surface with the 
plane perpendicular to the symmetry axis and containing the origin. At any point P 
on this line there is a time when the received signal is zero, as a result of the interference 
of three wavefronts, one from each pulse. This is the time of arrival f d  of the dislocation 
at P. The intersection of the three wavefronts describes a time-labelled line PR parallel 
to the symmetry axis. The speed along this line of the point of intersection is c cosec 8. 
Now, the phase relation between the three wavefronts remains constant (by definition) 
and, at the point of intersection, their amplitudes remain constant because the waves 
are plane and the group and phase velocities are identical. The dislocation condition 
is always satisfied, therefore, at the intersection point, and the speed of the dislocation 
line parallel to the symmetry axis must be c cosec 8. At a point Q a distance ds across 
the trajectory from P, the dislocation will result from the interference of three different 
wavefronts intersecting at a different time, td+dtd,  say. The time labels on the line 
described by the intersection of these three wavefronts will therefore be out of step 
by dtd with those on the first. Now, because a dislocation line is the locus of points 
of zero amplitude at a given time, locally that locus will have a gradient of 
-(dtd/ds)( c cosec 8) .  Notice that in the coplanar case, where 8 = 0, the speed of the 
points of intersection (and, therefore, of the dislocation lines parallel to the symmetry 
axis) becomes infinite, as does the gradient of the dislocation line. However, when 
8 f: 0, the gradient depends on the rate of change of arrival time with distance s. 

Figure 15. The trajectory surface T is part of a (non-circular) cylinder with generators 
parallel to the symmetry axis. At time 1, the dislocation line is DPD. At time r,+dr, it 
has moved rigidly upwards to pass through Q. 

Whether a wave dislocation line is edge or screw or mixed edge-screw depends on 
its direction relative to the local plane wave that it dislocates (Nye 1981). We shall 
take this to be the mean wavevector of the original beams. It follows that the 
dislocations in our model have an edge-screw nature dependent on their gradient. 
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Each dislocation line is curved, being pure screw at the edges of the trajectory surface 
( t  = f CO), where dt,/ds is large, and mixed edge-screw towards the middle. 

The motion of a dislocation line relative to the local plane wave determines its 
glide and  climb (as in crystals glide and climb denote motion relative to the crystal 
lattice). Because the phase velocity of the mean wave is the same as the velocity of 
the dislocation lines along the symmetry axis, the dislocations in the symmetric case 
we are now considering neither glide nor climb: they are carried rigidly by the wave. 
In a more general three-beam configuration, however, 6 would not lie in the dislocation 
trajectories, and  both climb and  glide would be exhibited. 

A common type of trajectory in the outer region is one that starts as being of 
two-beam character and, as it gets nearer the intermediate region, becomes influenced 
by the third beam. The perturbation from the third beam has two effects: the dislocation 
arrival time starts fluctuating as a function of distance along the trajectory and the 
trajectory itself becomes corrugated. In fact, the corrugations are in quadrature with 
the fluctuations and so the dislocation line is actually helical, the radius of the helix 
increasing as the intermediate region is approached. We show in appendix 2 that this 
is an  extension to pulses of a general result for continuous waves, that straight nulls 
become helical when perturbed by a weak plane wave (Berry er al 1979). 

Although we have discussed in detail only one three-dimensional configuration of 
beams, this simple symmetrical case contains all the significant aspects of a general 
three-dimensional configuration. Any other wavefield consisting of three beams of 
plane waves can be investigated using the appropriate linear transformation on the 
same computed results. 

9. Conclusions 

A model wavefield has been presented which, when pulse modulated, contains wave- 
front dislocations displaying diverse behaviour, including examples of edge, screw and 
mixed edge-screw dislocations, gliding and climbing in very general ways. However, 
all models are in some sense special, limiting the variety of behaviour of their dis- 
locations. In the three-beam model the most striking special property is the way saddle 
points in MO appear to pin trajectories, an  effect seen only at high delay-bandwidths 
when the trajectories are long enough to extend that far. Although in this model we 
expect the potential trajectories of the Wright and  Nye small-bandwidth theory to 
contain the saddles, the reason why the trajectories computed for large bandwidths 
are similarly constrained is not yet understood. 

The simplicity of the computation necessary to calculate the trajectories has allowed 
a detailed comparison of the exactly computed dislocation behaviour with the predic- 
tions given by the small-bandwidth theory, for several different bandwidths and 
envelope shapes. The comparisons show good agreement. The validity of the Wright 
and Nye local theory, applicable only near the c w  nulls, has also been demonstrated. 

For larger bandwidths the exact computations reveal new behaviour. As the 
delay-bandwidth increases, the ends of the trajectories for hyperbolic secant pulses 
first join together, and then the resulting ring trajectories develop cusps and loops 
which enable them to hook up  with their neighbours. For Lorentzian pulses the 
behaviour is more complicated. At lower delay-bandwidths the dislocations travel in 
long loops that begin and end on c w  nulls. As the delay-bandwidth increases the ends 
of the loops join together to give intersecting trajectories of two kinds: those which 
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include the c w  nulls and have large dislocation arrival times, and those where the 
dislocations have higher visibility and smaller arrival times. At still larger delay- 
bandwidths the trajectories develop cusps and loops and hook up with their neighbours 
in the way already seen for the hyperbolic secant pulse. A fuller account of the detailed 
behaviour of the dislocations in the three-beam model has been given by Nicholls 
(1984). 

Appendix 1. The amplitude and phase of the continuous-wave pattern produced by 
three beams 

In this appendix we discuss the continuous wave pattern whose complex amplitude a 
is given by equation (7 ) .  As pointed out in P 3, this can be regarded as a three- 
dimensional pattern either in 4 space or in r space, the two representations being 
linearly related by equations (8). Figures 3 and 16(a) display the two-dimensional 
section by the reference plane + d2 + 43 = 0 in 4 space or ( k ,  + k,+ k 3 )  - r = 0 in r 
space. These diagrams use the plotting convention described in 99 2 and 3 and are 
therefore undistorted pictures for the special case where the three beams are coplanar 
and at 120" to one another. 

The nulls shown by the contours of the amplitude pattern (figure 3) appear in the 
phase plots (figure 16(a)) as points where the contours of equal phase all come together 
radially. The smallest (primitive) unit cell for amplitude (broken line in figures 3 and 
16(a)) contains two nulls, one maximum and three saddle points. The smallest unit 
cell for phase (full line in figure 16(a)) is three times larger. 

3 A* 
i a )  i bl 

Figure 16. Contours of equal phase in the c w  three-beam interference pattern. ( a )  The 
reference plane. ( b )  The lattice plane in 4 space defined by 34, -2&+44, = O ;  one way 
of obtaining this pattern would be by the coplanar arrangement of beams shown below. 
A datum contour is indicated by the bolder line and the phase changes in the direction 
shown by the arrows. The repeating pattern of the nulls is clearly seen and part of a 
primitive unit cell for phase, containing ten nulls, is indicated. 
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As pointed out in $ 3 ,  the amplitude pattern, i.e. the pattern of M O ,  is essentially 
two dimensional, being constant on lines parallel to 4,  = c $ ~  = 4,, and therefore it can 
be fully shown on a plane diagram. For a general set of beam directions the amplitude 
pattern on any transverse plane (that is, not containing the pattern axis) is simply a 
linear distortion of the one shown. 

The phase distribution, however, is three dimensional, although its variation parallel 
to the line 4 ,  = 42= d3 is merely linear, by equation (9).  This means that on planes 
inclined to the reference plane the contours of equal phase will not be just a linear 
distortion of those shown but will have different forms. An interesting consequence 
of this is that on the reference plane (figure 16(a) there are places where the phase 
contours cross in threes to give monkey saddles. The reference plane is exceptional 
in this respect; on other lattice planes the phase saddles are of the usual kind, as 
illustrated in figure 16( b) .  

In  4 space the phase distribution of a always possesses a three-dimensional lattice 
(counting phase 4+2n as equivalent to phase 4) and in general this maps into a 
three-dimensional lattice in r space. However, there is an  exception when the beams 
are coplanar with an  irrational relation between their k vectors 

( A l . l )  p k ,  + qk, + sk, = 0. 

In  this case the whole of r space maps into the single plane 

~ 4 1 +  q6,+ ~ 4 3  = O  
in 4 space. Being irrational, this plane in C$ space does not possess a lattice and so 
neither does the three-dimensional phase distribution in r space; perpendicular to the 
plane of the beams the phase is constant and in the plane of the beams it is not periodic. 
This restriction does not apply to the amplitude pattern, which is always periodic, 
because in both 4 space and  r space it is always effectively two dimensional, being 
invariant in the direction d1 = 42 = 4, or k ,  r = kz  . r = k, r. However, although the 
distribution of phase in the plane of the beams does not strictly possess a lattice, its 
contour pattern still displays the periodicity of the amplitude pattern in a restricted 
sense. If the contour interval is 27r /n ,  where n is an  integer, the pattern of lines never 
repeats, because of the irrationality of p : q : s, but nevertheless the continuous field of 
contour directions that it represents, divested of contour labels, is periodic. The plane 
in 4 space chosen for figure 16(b) is rational, but the large unit cell indicates the 
approach to irrationality. 

Appendix 2 

Berry er af (1979) have shown that, for continuous waves, a straight null line becomes 
helical when perturbed by a weak plane wave. We now extend this result to the general 
case of time-dependent dislocations. A general wavefield can be represented by the 
wavefunction +( r, t )  = F (  r, t )  exp i(k, r - wet), where F is a complex envelope func- 
tion and k, the wavevector of a factored-out plane wave. The only constraint on 
+(r ,  t )  is that it satisfies the scalar wave equation. If we make a local expansion of 
the envelope function in the neighbourhood of the dislocation line, it can be truncated 
to first order, as this is sufficient to contain a dislocation’s wave structure, provided it 
is isolated (Nye 1981). Hence 

+( x, y ,  z, t ) = { ( a  + i b ) ( x  - ur ) + (c  + id  ) y }  exp[ i( k,x + k,,,y + k,z - wet)] (A2.1) 
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where k,, k,, k, are the components of k,, and a, b, c, d, U are real constants, and 
where Oz and Ox have been chosen tangent to the dislocation line and trajectory 
surface respectively. By equating the envelope in (A2.1) to zero (the dislocation 
condition), and separating the real and imaginary parts, the dislocation can be seen 
to be travelling with a speed u along the x axis; at t = 0 the dislocation passes through 
the origin. The trajectory of the dislocation is the plane y = 0. We now perturb 4 
using a plane wave with wavevector k‘, frequency wo and (small) amplitude E. The 
perturbed wavefield is given by 

+ E exp[i( kkx + kby + k:z - wot  + S ) ]  (A2.2) 

where E is the envelope function for the unperturbed wave (from (A2.1)), kk, kl, k: 
are the components of k‘, 8 is an arbitrary phase difference between the unperturbed 
and perturbing waves and E is real. Defining Ak = k, - k’, (A2.2) may be rewritten as 

$ ’ = { E  exp[i(Ak. r ) ] + ~  exp(i8)}exp[i(k’. r - w o t ) ]  

and the condition for the perturbed dislocation becomes 

E exp[i(Ak * r ) ]  + E exp(i8) = 0. 

This condition is satisfied when the amplitudes of E and E are equal and when the 
phases of the two terms differ by v, i.e. 

EE* = E’ (A2.3 a ) 

and 

tan-’{[b(x - u t )  + d y ] / [ a ( x  - u t )  + cy]}+Ak. r - 8 - v = 0 (A2.3 b )  

where E* is the complex conjugate of E. In full, the amplitude condition ( A 2 . 3 ~ )  is 

( a 2 +  b 2 ) ( x  - ~ t ) ~ + y ’ ( ~ * +  d 2 )  + 2y(x  - u t ) (  bd + U C )  - E’ = O  (A2.4) 

which represents an ellipse lying in the xy plane and moving along the x axis at the 
unperturbed dislocation’s speed U. From (A2.4) the size of the ellipse is proportional 
to E.  For sufficiently small E, therefore, the contribution to the phase variation across 
the ellipse from the second (plane-wave) term in (A2.3b) can be assumed negligible 
compared with the contribution from the arctangent term. The phase condition (A2.3b) 
then becomes 

tan-’{[b(x - u t )  + d y ] / [ a ( x  - u t )  + c y ] ) + A k , z  - 6 - 7~ = 0. (A2.5) 

At a fixed time, for any given z plane there is only one point on the ellipse where 
(A2.5) is satisfied and that point progresses around the ellipse as the z plane is changed. 
Thus the perturbed dislocation line takes the form of a helix with pitch 2v/Akz. The 
smallest pitch possible is with k ,  and k‘ antiparallel and lying in the z direction. With 
our definition of k, for the three-beam model the largest value of lkml is k and the 
smallest pitch is +A. 
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